Project 19 of 24
In Progress
Virtual Maker Exhibition

Virtual Maker Exhibition

120+ min

Ages 11+

What Will You Learn?

Can’t have a live runway show? Why not host a virtual experience?

About This Adventure

Today, fashion designers are not limited to fabrics in their designs. Technology has become part of our story and is much more accessible. Young designers can use tech such as lights, sensors, and microcontrollers to tell their stories.

In this adventure, you will experience and experiment as we go through the MakeFashion Edu process to support campers as they:

  • learn – about the elements of fashion and circuits

  • design – a story and the wearable

  • construct – a fashion tech piece using recyclable materials and lights

  • exhibit – be seen! Our favorite medium is the runway.

You will be able to support your designers as they find their voices and tell their own stories through fashion pieces they create and share.

This adventure is divided into several sections, each with its own projects. The bolded project denotes the page you are on. The arrows mark the section you are in.

Hosting a Virtual Experience

During this past year our students and teachers were creative in finding other methods to showcase designs and tell the stories. We have used YouTube, Facebook, Twitter, Instagram and other social media sites. We have found Virtual Reality is of the most interactive and successful methods of presenting the work remotely. Hubs by Mozilla is a free, accessible, and safe way to do so. In the virtual space, participants can view designs, move about at will, talk to other participants and meet the designers. Students who play video games are particularly adept at maneuvering around the space and can often help other students, as well as teachers, learn how to move and even create in the virtual space.

See a sample MakerFashion EDU Mozilla Hub!

About MakeFashion

MakeFashion Edu is an international non-profit working to promote learning through fashion and tech. Through hosting workshops, reach-out and push-in activities, and larger events, MakeFashion Edu sees providing access for young designers to go to industry and project-based learning as one way to pull local communities together.

SteamHead makerspace is a network of people, spaces, and events who collaborate to improve equity in education as the path forward. We believe that by embracing design thinking and a maker-mindset, education can be more engaging and meaningful, and with that more effective in preparing students for success. Check their website for their courses.

See More Projects in these topics:

Arts & Crafts Fabrication STEM or STEAM Wearables

See More Projects from these themes:

Art/Craft Studio Carnival/Theme Park The Canteen (Mess Hall and Recycling Station)
SteamHead 501c3
WE ARE A MAKERSPACE AND A MOVEMENT. Our mission is to provide access to quality, relevant education focused on integrating design, technology, and community. Because when people have access to great spaces and resources, they make great things.
Print Project

Maker Camp Project Standards

Based on NGSS (Next Generation Science Standards)

National Core Arts Standards

The National Core Arts Standards are a process that guides educators in providing a unified quality arts education for students in Pre-K through high school. These standards provide goals for Dance, Media Arts, Music, Theatre, and Visual Arts with cross-cutting anchors in Creating, Performing, Responding, and Connecting through art. The Anchor Standards include:
  1. Generate and conceptualize artistic ideas and work.
  2. Organize and develop artistic ideas and work.
  3. Refine and complete artistic work.
  4. Select, analyze, and interpret artistic work for presentation.
  5. Develop and refine artistic techniques and work for presentation.
  6. Convey meaning through the presentation of artistic work.
  7. Perceive and analyze artistic work.
  8. Interpret intent and meaning in artistic work.
  9. Apply criteria to evaluate artistic work.
  10. Synthesize and relate knowledge and personal experiences to make art.
  11. Relate artistic ideas and works with societal, cultural, and historical context to deepen understanding.
Please visit the website for specific details on how each anchor applies to each discipline.

CCSS (Common Core State Standards)

The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).

Geometry

  • Grades K-2
    • CCSS.MATH.CONTENT.K.G.A.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
    • CCSS.MATH.CONTENT.K.G.A.2 Correctly name shapes regardless of their orientations or overall size.
    • CCSS.MATH.CONTENT.K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
    • CCSS.MATH.CONTENT.K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
    • CCSS.MATH.CONTENT.K.G.B.6 Compose simple shapes to form larger shapes.
    • CCSS.MATH.CONTENT.1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.
    • CCSS.MATH.CONTENT.1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.
  • Grades 3-5
    • CCSS.MATH.CONTENT.4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
  • Middle School
    • CCSS.MATH.CONTENT.6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
    • CCSS.MATH.CONTENT.7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
    • CCSS.MATH.CONTENT.7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
    • CCSS.MATH.CONTENT.7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
    • CCSS.MATH.CONTENT.8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations.
    • CCSS.MATH.CONTENT.8.G.A.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
    • CCSS.MATH.CONTENT.8.G.A.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

ISTE Standards (International Society for Technology in Education)

The ISTE Standards provide the competencies for learning, teaching and leading in the digital age, providing a comprehensive roadmap for the effective use of technology in schools worldwide.

1.1 Empowered Learner

  • Summary: Students leverage technology to take an active role in choosing, achieving, and demonstrating competency in their learning goals, informed by the learning sciences.
  • 1.1.a Students articulate and set personal learning goals, develop strategies leveraging technology to achieve them and reflect on the learning process itself to improve learning outcomes.
  • 1.1.b Students build networks and customize their learning environments in ways that support the learning process.
  • 1.1.c Students use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways.
  • 1.1.d Students understand the fundamental concepts of technology operations, demonstrate the ability to choose, use and troubleshoot current technologies and are able to transfer their knowledge to explore emerging technologies.

1.2 Digital Citizen

  • Summary: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
  • 1.2.a Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.
  • 1.2.b Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.
  • 1.2.c Students demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property.
  • 1.2.d Students manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.

1.3 Knowledge Constructor

  • Summary: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
  • 1.3.a Students plan and employ effective research strategies to locate information and other resources for their intellectual or creative pursuits.
  • 1.3.b Students evaluate the accuracy, perspective, credibility and relevance of information, media, data or other resources.
  • 1.3.c Students curate information from digital resources using a variety of tools and methods to create collections of artifacts that demonstrate meaningful connections or conclusions.
  • 1.3.d Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

1.4 Innovative Designer

  • Summary: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
  • 1.4.a Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
  • 1.4.b Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
  • 1.4.c Students develop, test and refine prototypes as part of a cyclical design process.
  • 1.4.d Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems.

1.5 Computational Thinker

  • Summary: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
  • 1.5.a Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
  • 1.5.b Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
  • 1.5.c Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
  • 1.5.d Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

NGSS MS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
  • MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS HS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
  • HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
  • HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.
Makeyland Graphic

Sign up for monthly project ideas for young makers from the leading maker educators.

FEEDBACK