 
															Light Diffusion
10-30 min
Ages 8+
What Will You Learn?
Discover ways that diffusion can be used to enhance your circuits and fashion.
About This Adventure
Today, fashion designers are not limited to fabrics in their designs. Technology has become part of our story and is much more accessible. Young designers can use tech such as lights, sensors, and microcontrollers to tell their stories.
In this adventure, you will experience and experiment as we go through the MakeFashion Edu process to support campers as they:
- learn – about the elements of fashion and circuits 
- design – a story and the wearable 
- construct – a fashion tech piece using recyclable materials and lights 
- exhibit – be seen! Our favorite medium is the runway. 
You will be able to support your designers as they find their voices and tell their own stories through fashion pieces they create and share.
This adventure is divided into several sections, each with its own projects. The bolded project denotes the page you are on. The arrows mark the section you are in.
Adding Diffusion
When we think about Color, Line, Shape and Texture in relation to lights we need to consider diffusion. Diffusion means the scattering of light rays. For fashion, our young designers often refer to the states of diffusion as how glowy or pin pointy the light is. For different effects the LED might be covered with something like glue or fabric to get more diffusion or moving the LED further away from the covering will change it also.
For example, if you want to get the appearance of the night sky you may want each light to be a separate point to look like the stars, so not much diffusion is needed, but if you want the effect of a sunset you would need to diffuse the lights so there is a glowing effect.
Things to try and experiment.
Cover your battery/LED circuit with different fabrics or paper or plastics to see the different effects.
Change the distance between the coverings and the light.
Combine different coverings and distances.
What do you notice? Which materials diffuse better than others? Which effects would help you tell your story on the runway? Which of the elements of fashion design can be manipulated by diffusing the light?
On the Runway
See Diffusion on the runway! Where are the lights on this outfit, and how are they getting diffused?
Notice that the headpiece uses clear wires, have you seen wires like these before? They are fiber optic wires. If you have fishing string at home, test it out to see how it diffuses light?
The LEDs are being a material like gauze, that allows you to both see the lights below and fills the fabric with the same colors.
About MakeFashion
MakeFashion Edu is an international non-profit working to promote learning through fashion and tech. Through hosting workshops, reach-out and push-in activities, and larger events, MakeFashion Edu sees providing access for young designers to go to industry and project-based learning as one way to pull local communities together.
SteamHead makerspace is a network of people, spaces, and events who collaborate to improve equity in education as the path forward. We believe that by embracing design thinking and a maker-mindset, education can be more engaging and meaningful, and with that more effective in preparing students for success. Check their website for their courses.
Materials:
- Your choice of LED lights and power source
- Plastic grocery store bag
- Copy paper, tracing paper, etc.
- Paper towels
- Cotton balls, cotton pads, cotton batting
- Muslin, cotton, felt, knit or other fabrics
- Bubble wrap or bubble wrap shipping envelope
See More Projects in these topics:
Arts & Crafts Electronics Fabrication Fiber Arts Science WearablesSee More Projects from these themes:
Art/Craft Studio Carnival/Theme Park The Canteen (Mess Hall and Recycling Station) The Shop (Makerspace)SteamHead 501c3
Maker Camp Project Standards
Based on NGSS (Next Generation Science Standards)
National Core Arts Standards
The National Core Arts Standards are a process that guides educators in providing a unified quality arts education for students in Pre-K through high school. These standards provide goals for Dance, Media Arts, Music, Theatre, and Visual Arts with cross-cutting anchors in Creating, Performing, Responding, and Connecting through art. The Anchor Standards include:- Generate and conceptualize artistic ideas and work.
- Organize and develop artistic ideas and work.
- Refine and complete artistic work.
- Select, analyze, and interpret artistic work for presentation.
- Develop and refine artistic techniques and work for presentation.
- Convey meaning through the presentation of artistic work.
- Perceive and analyze artistic work.
- Interpret intent and meaning in artistic work.
- Apply criteria to evaluate artistic work.
- Synthesize and relate knowledge and personal experiences to make art.
- Relate artistic ideas and works with societal, cultural, and historical context to deepen understanding.
NGSS (Next Generation Science Standards)
The Next Generation Science Standards (NGSS) are K–12 science content standards. Learn more.Forces and Motion
- 3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
- HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.
CCSS (Common Core State Standards)
The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).Geometry
- Grades K-2
- CCSS.MATH.CONTENT.K.G.A.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
- CCSS.MATH.CONTENT.K.G.A.2 Correctly name shapes regardless of their orientations or overall size.
- CCSS.MATH.CONTENT.K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
- CCSS.MATH.CONTENT.K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
- CCSS.MATH.CONTENT.K.G.B.6 Compose simple shapes to form larger shapes.
- CCSS.MATH.CONTENT.1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.
- CCSS.MATH.CONTENT.1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.
 
- Grades 3-5
- CCSS.MATH.CONTENT.4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
 
- Middle School
- CCSS.MATH.CONTENT.6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
- CCSS.MATH.CONTENT.7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
- CCSS.MATH.CONTENT.7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
- CCSS.MATH.CONTENT.7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
- CCSS.MATH.CONTENT.8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations.
- CCSS.MATH.CONTENT.8.G.A.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
- CCSS.MATH.CONTENT.8.G.A.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
 
National Core Arts Standards
The National Core Arts Standards are a process that guides educators in providing a unified quality arts education for students in Pre-K through high school. Also see Standards with cross-cutting anchors in Creating, Performing, Responding, and Connecting through art for Visual Arts.CCSS (Common Core State Standards)
The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).English Language Arts Standards » Science & Technical Subjects
- Middle School
- 
- 
- CCSS.ELA-LITERACY.RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts.
- CCSS.ELA-LITERACY.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
- CCSS.ELA-LITERACY.RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
- CCSS.ELA-LITERACY.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
- CCSS.ELA-LITERACY.RST.6-8.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.
 
 
- 
- High School
- 
- CCSS.ELA-LITERACY.RST.9-10.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
- CCSS.ELA-LITERACY.RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
- CCSS.ELA-LITERACY.RST.9-10.5 Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
- CCSS.ELA-LITERACY.RST.9-10.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
- CCSS.ELA-LITERACY.RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- CCSS.ELA-LITERACY.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- CCSS.ELA-LITERACY.RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- CCSS.ELA-LITERACY.RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
- CCSS.ELA-LITERACY.RST.11-12.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.
 
NGSS MS.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
- MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
- MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
- MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
NGSS HS.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
- HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
- HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
- HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
NGSS 3-5.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
 
         
         
         
         
         
             
             
              
 
                             
	