Project 1 of 0
In Progress

Granja de Gusanos

30-60 min

Ages 8+

¿Qué vas a hacer?

Vamos a crear una granja de gusanos o lombrices, para aprender más acerca de su forma de nutrición, relación con el medio.

¿Qué aprenderás?

Compara la diversidad de formas de nutrición, relación con el medio e identifica que son resultado de la evolución.

Reúne tus materiales... ¡comencemos!

worm farm materials

Paso 1

Toma tu botella de plástico y corta la parte de arriba.

worm farm step 1

Paso 2

Para crear nuestra granja de gusanos vamos a agregar distintos niveles: primero colocamos la tierra, luego la arena y repite; también agregamos un poco de agua para crear humedad.

worm farm step 2_1

Añade lombrices y comida para lombrices

Paso 3

Una vez que el frasco esté lleno, después agrega  tus gusanos en la parte superior del frasco.

Paso 4

Agrega la composta,estos son los desechos de las verduras; esta es la comida para las lombrices.

Decorar su casa de gusanos

Paso 5

Envuelve tu botella con la hoja de papel color negro, ya que La luz solar puede matar las lombrises porque son sensibles a la radiación ultravioleta.

Ahora tapa tu botella con tela de algodón y una liga.

Paso 6

Durante las próximas semanas riega tu granja de lombrices con una botella rociadora, y continúa revisando el frasco de lombrices, puedes usar tu cuaderno de biología para hacer predicción y observaciones sobre las actividades de los gusanos.

Al revisar las lombrices a lo largo de las semanas observaremos que gradualmente, las capas de tierra se han combinado.

Muestras terminadas

finished worm farm

¿Qué está pasando aquí?

aireación del suelo, compost de lombricultura

Los gusanos son esenciales para el suelo, son como una mini maquinaria que revuelve el suelo y lo rompe. Al formar túneles a medida que se mueven, rompen grandes secciones del suelo, al igual que oxigenan, transportan nutrientes y minerales. También se alimentan de las bacterias y los hongos de los restos de comida.

¿Qué es lo siguiente?

¿Pueden los gusanos frenar el cambio climático?

“David Johnson, de la Universidad Estatal de Nuevo México, cree que sí. La receta, dice, es inclinar la proporción de hongos en el suelo hacia los hongos”. – del artículo de Scientific American, Can Soil Microbes Slow Climate Change.

Ahora te toca a ti, haz una lluvia de ideas sobre cómo podemos ayudar a conservar nuestros suelos.

Y luego intenta uno de estos proyectos…

bacteria battery
Bacteria Battery by Ashley Franks
plant protector
Plant Protector by Luke Iseman

Acerca de MoonMakers

MoonMakers — lideradas por Camila and Diego Luna — somos una comunidad de creadores apasionados por el conocimiento. Un Makerspace, un espacio abierto con diferentes máquinas de fabricación digital. Y un canal de YouTube donde promovemos la ciencia, la tecnología y el movimiento maker.

MoonMakers ha colaborado con empresas como: Sesame Street, Make Community y en México con Televisión Educativa y Fundación Televisa, creando contenido educativo.

Hemos imparto talleres por la República Mexicana con: Talent Land, Secretaría de educación en Jalisco, Conacyt, Centro Cultural España.

MoonMakers

Materials:

  • Botella pet
  • Tijeras
  • Tierra 
  • Arena
  • Lombrices
  • Hoja papel color negro
  • Tela de algodón (delgada)
  • Liga
  • Cinta
  • Composta

See More Projects in these topics:

Fabrication Science STEM or STEAM Sustainability

See More Projects from these themes:

Farm The Canteen (Mess Hall and Recycling Station)
MoonMakers
Somos una comunidad de creadores apasionados por el conocimiento. Un Makerspace, un espacio abierto con diferentes máquinas de fabricación digital. Y un canal de YouTube donde promovemos la ciencia, la tecnología y el movimiento maker.
Print Project

Maker Camp Project Standards

Based on NGSS (Next Generation Science Standards)

CCSS (Common Core State Standards)

The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).

Geometry

  • Grades K-2
    • CCSS.MATH.CONTENT.K.G.A.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
    • CCSS.MATH.CONTENT.K.G.A.2 Correctly name shapes regardless of their orientations or overall size.
    • CCSS.MATH.CONTENT.K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
    • CCSS.MATH.CONTENT.K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
    • CCSS.MATH.CONTENT.K.G.B.6 Compose simple shapes to form larger shapes.
    • CCSS.MATH.CONTENT.1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.
    • CCSS.MATH.CONTENT.1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.
  • Grades 3-5
    • CCSS.MATH.CONTENT.4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
  • Middle School
    • CCSS.MATH.CONTENT.6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
    • CCSS.MATH.CONTENT.7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
    • CCSS.MATH.CONTENT.7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
    • CCSS.MATH.CONTENT.7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
    • CCSS.MATH.CONTENT.8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations.
    • CCSS.MATH.CONTENT.8.G.A.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
    • CCSS.MATH.CONTENT.8.G.A.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

CCSS (Common Core State Standards)

The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).

English Language Arts Standards » Science & Technical Subjects

  • Middle School
      • CCSS.ELA-LITERACY.RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts.
      • CCSS.ELA-LITERACY.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
      • CCSS.ELA-LITERACY.RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
      • CCSS.ELA-LITERACY.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
      • CCSS.ELA-LITERACY.RST.6-8.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.
  • High School
    • CCSS.ELA-LITERACY.RST.9-10.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
    • CCSS.ELA-LITERACY.RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
    • CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
    • CCSS.ELA-LITERACY.RST.9-10.5 Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
    • CCSS.ELA-LITERACY.RST.9-10.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
    • CCSS.ELA-LITERACY.RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
    • CCSS.ELA-LITERACY.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
    • CCSS.ELA-LITERACY.RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
    • CCSS.ELA-LITERACY.RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
    • CCSS.ELA-LITERACY.RST.11-12.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

ISTE Standards (International Society for Technology in Education)

The ISTE Standards provide the competencies for learning, teaching and leading in the digital age, providing a comprehensive roadmap for the effective use of technology in schools worldwide.

1.1 Empowered Learner

  • Summary: Students leverage technology to take an active role in choosing, achieving, and demonstrating competency in their learning goals, informed by the learning sciences.
  • 1.1.a Students articulate and set personal learning goals, develop strategies leveraging technology to achieve them and reflect on the learning process itself to improve learning outcomes.
  • 1.1.b Students build networks and customize their learning environments in ways that support the learning process.
  • 1.1.c Students use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways.
  • 1.1.d Students understand the fundamental concepts of technology operations, demonstrate the ability to choose, use and troubleshoot current technologies and are able to transfer their knowledge to explore emerging technologies.

1.2 Digital Citizen

  • Summary: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
  • 1.2.a Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.
  • 1.2.b Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.
  • 1.2.c Students demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property.
  • 1.2.d Students manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.

1.3 Knowledge Constructor

  • Summary: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
  • 1.3.a Students plan and employ effective research strategies to locate information and other resources for their intellectual or creative pursuits.
  • 1.3.b Students evaluate the accuracy, perspective, credibility and relevance of information, media, data or other resources.
  • 1.3.c Students curate information from digital resources using a variety of tools and methods to create collections of artifacts that demonstrate meaningful connections or conclusions.
  • 1.3.d Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

1.4 Innovative Designer

  • Summary: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
  • 1.4.a Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
  • 1.4.b Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
  • 1.4.c Students develop, test and refine prototypes as part of a cyclical design process.
  • 1.4.d Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems.

1.5 Computational Thinker

  • Summary: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
  • 1.5.a Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
  • 1.5.b Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
  • 1.5.c Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
  • 1.5.d Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

NGSS MS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
  • MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS HS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
  • HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
  • HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS 3-5.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
  • 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.
Makeyland Graphic

Sign up for monthly project ideas for young makers from the leading maker educators.

FEEDBACK