30-60 min
Ages 8+
What Will You Make?
Make yourself a gripper that is based on a fish’s tailfin!
What Will You Learn?
There is a lot to be discovered in nature. We can learn quite a bit from plants and animals.
Bionics is a made-up word. It is a combination of the words biology and robotics. Bionics studies ways to transfer natural phenomena to technology. After all, over the course of many millions of years nature has developed techniques that humans can learn from. Here it is important to carefully observe plants and animals. For example, swim flippers were modeled on a duck’s feet. Pliers, which can be found in every modern household, were inspired by stag beetles. And the model for this gripper was the tail fin of a bony fish.
Make the Gripper
Print out the pattern
Download the template here. There are two per page. If you cannot print your template on cardstock, glue the whole pattern on construction paper.
Put it together and squeeze!
Apply glue to the gray areas of the fin. Glue each matching rib in place. For example, “Rib 1” on both “Glue Rib 1” spots.
Join the bottom of the fin together as in the picture.
Pinch a bottom corner to get it to “grip.” Put your thumb on the bottom and other fingers on the side. (Your fingers should be below Rib 3.)
Give it a squeeze!
What Is Happening Here?
Festo Bionics
Festo is A leading world-wide supplier of pneumatic and electric drive technology for factory and process automation. This project is based on the Robotino. Robotino is made up of a pneumatic drive and three gripping fingers. What is special about these gripping fingers is that they move in just the same way — left and right, up and down — as the tail of a bony fish. If a person pushes against a tail fin with his or her finger, it doesn’t bend away. On the contrary. It bends towards the finger. In other words the gripping fingers are very adaptable. “We call this the Fin Ray Effect,” explains Johannes Stoll of Festo. In this way, it is possible for the gripper to pick up objects that are very different in size.
What' Next?
Robotic Zoo
Visit the robotic zoo of the future today with Maker Camp! You’ll explore everything from bionic kangaroos to an elephant trunk-arm. We chat with fluid power engineer Jacqueline MacPherson and robo-wrangler Andrea Ziomek, both of Festo, to learn how this engineering dream factory looks to the natural world for inspiration in the emerging field of bionics. Meet Festo’s Aqua Jelly, Aqua Penguin, Aqua Ray, the Airacuda, and more! The live hangout was part of Maker Camp 2014.
This fun project is provided by Festo as part of their appearance for Maker Camp 2014.
Materials:
- Construction paper or cardstock
- Glue, glue stick or white glue
- Scissors
See More Projects in these topics:
Paper Crafts Science STEM or STEAMSee More Projects from these themes:
Marina/WaterfrontMaker Camp
Maker Camp Project Standards
Based on NGSS (Next Generation Science Standards)
National Core Arts Standards
The National Core Arts Standards are a process that guides educators in providing a unified quality arts education for students in Pre-K through high school. Also see Standards with cross-cutting anchors in Creating, Performing, Responding, and Connecting through art for Visual Arts.CCSS (Common Core State Standards)
The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).English Language Arts Standards » Science & Technical Subjects
- Middle School
-
-
- CCSS.ELA-LITERACY.RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts.
- CCSS.ELA-LITERACY.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
- CCSS.ELA-LITERACY.RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
- CCSS.ELA-LITERACY.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
- CCSS.ELA-LITERACY.RST.6-8.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.
-
- High School
-
- CCSS.ELA-LITERACY.RST.9-10.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
- CCSS.ELA-LITERACY.RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
- CCSS.ELA-LITERACY.RST.9-10.5 Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
- CCSS.ELA-LITERACY.RST.9-10.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
- CCSS.ELA-LITERACY.RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- CCSS.ELA-LITERACY.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- CCSS.ELA-LITERACY.RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- CCSS.ELA-LITERACY.RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
- CCSS.ELA-LITERACY.RST.11-12.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.
ISTE Standards (International Society for Technology in Education)
The ISTE Standards provide the competencies for learning, teaching and leading in the digital age, providing a comprehensive roadmap for the effective use of technology in schools worldwide.1.1 Empowered Learner
- Summary: Students leverage technology to take an active role in choosing, achieving, and demonstrating competency in their learning goals, informed by the learning sciences.
- 1.1.a Students articulate and set personal learning goals, develop strategies leveraging technology to achieve them and reflect on the learning process itself to improve learning outcomes.
- 1.1.b Students build networks and customize their learning environments in ways that support the learning process.
- 1.1.c Students use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways.
- 1.1.d Students understand the fundamental concepts of technology operations, demonstrate the ability to choose, use and troubleshoot current technologies and are able to transfer their knowledge to explore emerging technologies.
1.2 Digital Citizen
- Summary: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
- 1.2.a Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.
- 1.2.b Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.
- 1.2.c Students demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property.
- 1.2.d Students manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.
1.3 Knowledge Constructor
- Summary: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
- 1.3.a Students plan and employ effective research strategies to locate information and other resources for their intellectual or creative pursuits.
- 1.3.b Students evaluate the accuracy, perspective, credibility and relevance of information, media, data or other resources.
- 1.3.c Students curate information from digital resources using a variety of tools and methods to create collections of artifacts that demonstrate meaningful connections or conclusions.
- 1.3.d Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
1.4 Innovative Designer
- Summary: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
- 1.4.a Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
- 1.4.b Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
- 1.4.c Students develop, test and refine prototypes as part of a cyclical design process.
- 1.4.d Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems.
1.5 Computational Thinker
- Summary: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
- 1.5.a Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
- 1.5.b Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
- 1.5.c Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
- 1.5.d Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
NGSS MS.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
- MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
- MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
- MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
NGSS HS.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
- HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
- HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
- HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
NGSS 3-5.Engineering Design
The Next Generation Science Standards (NGSS) are K–12 science content standards.- 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.