Project 2 of 9
In Progress
10 3D Prints

10 Great Short Prints

30 min. each

Ages 8+

What Will You Learn?​

Having a well-tuned printer allows you to print larger and longer — from overnight into multiple days. Many of the printers we tested can easily take 40 hours or more to print items that max out their build areas. However, sometimes you just want fast prints for handouts, demos, or even while exhibiting at Maker Faire!

Here’s the 3DP Test Team’s curated list of fast prints that work well on any machine and take very little time.

The Prints

Stretchy Bracelet

A no-clasp bracelet that prints as a single piece and stretches to be worn. Download on Thingiverse.

Snake

This snake is meant to replicate the old-fashioned bendable wooden toys. Download on Thingiverse.

Pocket Coin-Op Bottle Opener

Open your soda easily with this bottle opener. Download on Thingiverse.

Customizable Carabiner

A carabiner to secure your keyring. Can be customized. Download on Thingiverse.

Mini Whistle

A very small whistle, but with a loud sound. Download on YouMagine.

Maker Faire Robot

A 3D version of the Maker Faire robot. It’s a very good “Hello world” test for 3D printers. Download on Thingiverse.

Weekly Cup

One in a series of 3D printed cups you can make. Download on Thingiverse.

Spinning Top

A spinning top to delight kids (of all sizes). Download on Thingiverse.

Mobile Phone Stand

A simple stand for your smartphone. Download on Thingiverse.

Rebel coin

A Star Wars coin for a launcher. Take this idea and remix! Download on YouMagine.

What's Next?

Make it Yourself

Why not try designing your own 3D printed creations? Tinkercad is free and offers great tutorials and projects to get you started with Computer-Aided Design (CAD).

  • Starters define basic 3D design functions, and link to relevant Lessons to develop your skills.

  • Lessons help you learn important skills in just a few steps – so you can master 3D design in no time.

  • Projects provide easy-to-follow instructions to set you on the fast path to designing in 3D.

About the Magazine

Check out our collection of current and past issues of Make: magazine, rich with new ideas for projects, technology, and DIY articles, this magazine is not to be missed! Or subscribe today to get all the new issues!

This article was originally posted on Make: on November 10, 2014 by John Abella.

See project for links to print files.

See More Projects in these topics:

Fabrication Games

See More Projects from these themes:

Art/Craft Studio The Shop (Makerspace)
Maker Camp
Maker Camp is a do-it-yourself online resource to help leaders like you organize a summer camp that engages children in making. Our goal is to provide you and your campers with the inspiration and the helpful resources, along with many possible projects to fit a wide range of interests and abilities. The idea is to focus on making as a playful, social activity. Maker Camp provides enough support for anyone to get started. Making provides experiences that help children become self-directed learners and good problem-solvers.
Print Project

Maker Camp Project Standards

Based on NGSS (Next Generation Science Standards)

CCSS (Common Core State Standards)

The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).

Geometry

  • Grades K-2
    • CCSS.MATH.CONTENT.K.G.A.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
    • CCSS.MATH.CONTENT.K.G.A.2 Correctly name shapes regardless of their orientations or overall size.
    • CCSS.MATH.CONTENT.K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
    • CCSS.MATH.CONTENT.K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
    • CCSS.MATH.CONTENT.K.G.B.6 Compose simple shapes to form larger shapes.
    • CCSS.MATH.CONTENT.1.G.A.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.
    • CCSS.MATH.CONTENT.1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.
  • Grades 3-5
    • CCSS.MATH.CONTENT.4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
  • Middle School
    • CCSS.MATH.CONTENT.6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
    • CCSS.MATH.CONTENT.7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
    • CCSS.MATH.CONTENT.7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
    • CCSS.MATH.CONTENT.7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
    • CCSS.MATH.CONTENT.8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations.
    • CCSS.MATH.CONTENT.8.G.A.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
    • CCSS.MATH.CONTENT.8.G.A.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

NGSS MS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
  • MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS HS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
  • HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
  • HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS 3-5.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
  • 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.
Makeyland Graphic

Sign up for monthly project ideas for young makers from the leading maker educators.

FEEDBACK