Project
Materials

Ripcord Chopper

WHAT WILL YOU MAKE?

A toy chopper that will fly through the air when you pull the ripcord!

WHAT WILL YOU LEARN?

You will learn to cut drill PVC and wood to construct a flying toy.

STEPS

STEP 1

Drill Holes
  • Drill a hole through the PVC pipe one inch away from the end.
  • Now drill a hole through the wooden dowel at its center. The hole should be just large enough for the string to fit through.

STEP 2

Attach the Dowel
  • Cut a hole into the middle of the sponge emery board that is large enough for the dowel to fit through.
  • Secure it to the emery board with glue

STEP 3

Bend the Board
  • Once the glue is dry, bend the ends of the emery board in opposite directions as seen in the photo.
  • Insert the dowel into the PVC pipe.

STEP 4

Add the String
  • Thread the string through the hole that you drilled in the PVC pipe and then through the hole that you drilled in the dowel (see picture).
  • Turn the dowel so that the string winds around it until there is a small piece left hanging out of the PVC pipe.
  • Hold the pipe vertically and pull the string out as hard as you can!
  • If your chopper doesn't fly away, then try turning the dowel in the opposite direction when you wind up the string.

WHAT'S HAPPENING HERE?

The science of a helicopter is exactly the same as the science of an airplane: it works by generating lift—an upward-pushing force that overcomes its weight and sweeps it into the air. Planes make lift with airfoils (wings that have a curved cross-section). Helicopters also make air move over airfoils to generate lift, but instead of having their airfoils in a single fixed wing, they have them built into their rotor blades, which spin around at high speed. Learn more about how helicopters work at Explain That Stuff.

WHAT'S NEXT?

Make a paper helicopter and compare it’s flight to your ripcord chopper. Learn how on Exploratorium.

Materials:

  • 6" of PVC Pipe
  • 7" long wooden dowel that can fit inside the PVC pipe
  • Sponge Emery Board
  • String
  • Glue
  • Drill

See More Projects in these topics:

Engineering Games Physics

See More Projects from these themes:

The Depot (Airport/Space Station/ Racetrack)
Maker Camp
Maker Camp is a do-it-yourself online resource to help leaders like you organize a summer camp that engages children in making. Our goal is to provide you and your campers with the inspiration and the helpful resources, along with many possible projects to fit a wide range of interests and abilities. The idea is to focus on making as a playful, social activity. Maker Camp provides enough support for anyone to get started. Making provides experiences that help children become self-directed learners and good problem-solvers.
PRINT THESE INSTRUCTIONS
BROWSE MORE MAKER CAMP PROJECTS FIND EVEN MORE PROJECTS AT Make:

Please Note

Your safety is your own responsibility, including proper use of equipment and safety gear, and determining whether you have adequate skill and experience. Power tools, electricity, and other resources used for these projects are dangerous, unless used properly and with adequate precautions, including safety gear and adult supervision. Some illustrative photos do not depict safety precautions or equipment, in order to show the project steps more clearly. Use of the instructions and suggestions found in Maker Camp is at your own risk. Make Community, LLC, disclaims all responsibility for any resulting damage, injury, or expense.

Maker Camp Project Standards

Based on NGSS (Next Generation Science Standards)

CCSS (Common Core State Standards)

The Common Core is a set of high-quality academic standards in mathematics and English language arts/literacy (ELA).

Measurement & Data

  • Grades K-2
    • CCSS.MATH.CONTENT.K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.
    • CCSS.MATH.CONTENT.1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.
    • CCSS.MATH.CONTENT.1.MD.A.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
    • CCSS.MATH.CONTENT.2.MD.A.1 Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
    • CCSS.MATH.CONTENT.2.MD.A.2 Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
    • CCSS.MATH.CONTENT.2.MD.A.3 Estimate lengths using units of inches, feet, centimeters, and meters.
    • CCSS.MATH.CONTENT.2.MD.A.4 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.
  • Grades 3-5
    • CCSS.MATH.CONTENT.3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.
    • CCSS.MATH.CONTENT.4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit.
    • CCSS.MATH.CONTENT.4.MD.C.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement.
    • CCSS.MATH.CONTENT.5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
    • CCSS.MATH.CONTENT.5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.

Ratios & Proportional Relationships

  • Middle School
    • CCSS.MATH.CONTENT.6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.
    • CCSS.MATH.CONTENT.6.RP.A.3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
    • CCSS.MATH.CONTENT.7.RP.A.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.
    • CCSS.MATH.CONTENT.7.RP.A.2 Recognize and represent proportional relationships between quantities.

NGSS (Next Generation Science Standards)

The Next Generation Science Standards (NGSS) are K–12 science content standards.

Forces and Interactions

  • Grades K-2
    • K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
    • K-PS2-2.Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.
  • Grades 3-5
    • 3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
    • 3-PS2-2. Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.
    • 3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
    • 3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.
  • Middle School
    • MS-PS2-1. Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
    • MS-PS2-2. Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
    • MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
    • MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
    • MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
  • High School
    • HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
    • HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
    • HS-PS2-3. Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
    • HS-PS2-4. Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects.
    • HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

NGSS 3-5.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
  • 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS MS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
  • MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

NGSS HS.Engineering Design

The Next Generation Science Standards (NGSS) are K–12 science content standards.
  • HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
  • HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
  • HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
For additional information on using content standards with our projects please visit the Maker Camp Playbook.

ALL DONE? SHARE IT!

Share pictures and videos of your cool build! Be sure to use #maketogether or #makercamp

POST YOUR PROJECTS

Escape to an island of imagination + innovation as Maker Faire Bay Area returns for its 16th iteration!

Prices Increase in....

Days
Hours
Minutes
Seconds
FEEDBACK